skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Big Data systems are typically implemented in object-oriented languages such as Java and Scala due to the quick development cycle they provide. These systems are executed on top of a managed runtime such as the Java Virtual Machine (JVM), which requires each data item to be represented as an object before it can be processed. This representation is the direct cause of many kinds of severe inefficiencies. We developed Gerenuk, a compiler and runtime that aims to enable a JVM-based data-parallel system to achieve near-native efficiency by transforming a set of statements in the system for direct execution over inlined native bytes. The key insight leading to Gerenuk's success is two-fold: (1) analytics workloads often use immutable and confined data types. If we speculatively optimize the system and user code with this assumption, the transformation can be made tractable. (2) The flow of data starts at a deserialization point where objects are created from a sequence of native bytes and ends at a serialization point where they are turned back into a byte sequence to be sent to the disk or network. This flow naturally defines a speculative execution region (SER) to be transformed. Gerenuk compiles a SER speculatively into a version that can operate directly over native bytes that come from the disk or network. The Gerenuk runtime aborts the SER execution upon violations of the immutability and confinement assumption and switches to the slow path by deserializing the bytes and re-executing the original SER. Our evaluation on Spark and Hadoop demonstrates promising results. 
    more » « less
  2. null (Ed.)